Journal of Scientific Dentistry

Register      Login

VOLUME 11 , ISSUE 1 ( January-June, 2021 ) > List of Articles


Collagen—The Skeleton of the Periodontium: A Review

Apoorva Sokke Mallikarjunappa, Swati George, Suchetha Aghanashini, Divya Bhat, Darshan B Mundinamane, Sapna Nadiger

Keywords : Biochemistry, Collagen, Crimping, Degradation, Mechanical support, Mineralization, Sharpey\'s fibers

Citation Information : Mallikarjunappa AS, George S, Aghanashini S, Bhat D, Mundinamane DB, Nadiger S. Collagen—The Skeleton of the Periodontium: A Review. 2021; 11 (1):31-36.

DOI: 10.5005/jp-journals-10083-0938

License: CC BY-NC 4.0

Published Online: 01-07-2021

Copyright Statement:  Copyright © 2021; Jaypee Brothers Medical Publishers (P) Ltd.


Aim and objective: The fibers of the periodontal ligament are a structurally integrated unit of fibrous components mainly collagenous in nature and similar to the other supportive connective tissues. Collagen is the foremost abundant protein in mammals. Within the extracellular matrix, they form supramolecular assemblies with a minimum of one triple-helical domain. Background: The collagen family comprises 28 members. The fibers of the periodontium play a role in the structural organization of the tissues, and contribute to its mechanical properties, by accommodating intensive forces from mastication and tooth eruption. They interact with cells via several receptor families and regulate their proliferation, migration, and differentiation. Certain collagens have a restricted tissue distribution and hence specific biological functions. Review results: This review brings to light the synthesis, mineralization, and degradation of various types of collagen. Conclusion: Collagen serves immense functions related to the structural integrity as well in the tooth-eruption mechanism. It presents with a rapid turnover rate which along with its biochemical composition would thereby help in determining a pathological involvement causing periodontal destruction.

PDF Share
  1. Sloan P, Carter DH, Kielty CM, Shuttleworth CA. An immunohistochemical study examining the role of collagen type VI in rodent periodontal ligament. Histochem J 1993;25(7):523–530. DOI: 10.1007/BF00159289.
  2. Olsen BR. The next frontier: molecular biology of extracellular matrix. Connect Tissue Res 1989;3(2–3):115–121. DOI: 10.3109/03008208909002411.
  3. Berkowitz BKB, Moxham BJ, Newman HN. The periodontal ligament in health and disease. 2nd ed. Eur J Orthod 1996;8(6):670–671. DOI: 10.1093/ejo/18.6.670.
  4. Kielty C, Grant M. The collagen family: structure, assembly, and organization in the extracellular matrix. Royce PM, Steinmann B eds. 2003 pp. 159–221. DOI: 10.1002/0471221929.ch2.
  5. vonder Mark H, Aumailley M, Wick G, Fleischmajer R, Timpl R. Immunochemistry, genuine size and tissue localization of collagen VI. Eur J Biochem 1984;142:493–502
  6. Nanci A, Ten Cate AR. Ten Cate's oral histology: development, structure, and function. St. Louis, Mo: Elsevier; 2013.
  7. Kumar GS, Jha AK, Goswami N, Sahu SK, Kumar R, Tayaar AS. Orban's oral histology and embryology. Elsevier; 2011.
  8. Kaku M, Yamauchi M. Mechano-regulation of collagen biosynthesis in periodontal ligament. J Prosthodont Res 2014;58(4):193–207. DOI: 10.1016/j.jpor.2014.08.003.
  9. Li C, Fan M, Tang Z. Detection of types I, III and IV collagen in human cementum, periodontal ligament and alveolar bone. Zhonghua Kou Qiang Yi Xue Za Zhi 1997;32(2):70–72.
  10. Everts V, Niehof A, Jansen D, Beertsen W. Type VI collagen is associated with microfibrils and oxytalan fibers in the extracellular matrix of periodontium, mesenterium and periosteum. J Periodontal Res 1998;33(2):118–125. DOI: 10.1111/j.1600-0765.1998.tb02300.x.
  11. Reichenberger E, Baur S, Sukotjo C, Olsen BR, Karimbux NY, Nishimura I. Collagen XII mutation disrupts matrix structure of periodontal ligament and skin. J Dent Res 2000;79(12):1962–1968. DOI: 10.1177/00220345000790120701T.
  12. Manon-Jensen T, Karsdal MA. Type XII collagen. In: Biochemistry of collagens, laminins and elastin: structure, function and biomarkers. 1st ed., Cambridge, MA, USA: Academic Press; 2016. pp. 81–85.
  13. Zvackova I, Matalova E, Lesot H. Regulators of collagen fibrillogenesis during molar development in the ouse. Front Physiol 2017;8:554. DOI: 10.3389/fphys.2017.00554.
  14. Karimbux NY, Nishimura I. Temporal and spatial expressions of type XII collagen in the remodeling periodontal ligament during experimental tooth movement. J Dent Res 1995;74(1):313–318. DOI: 10.1177/00220345950740010501.
  15. Ramachandran GN, Ramakrishnan C, Sasisekharan V. Stereochemistry of polypeptide chain configurations. J Mol Biol 1963;7(1):95–99. DOI: 10.1016/s0022-2836(63)80023-6.
  16. Ramachandran GN, Mitra AK. An explanation for the rare occurrence of cis peptide units in proteins and polypeptides. J Mol Biol 1976;107(1):85–92. DOI: 10.1016/s0022-2836(76)80019-8.
  17. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. Molecular cell biology. 4th ed., New York: WH Freeman; 2000. Available from:
  18. Fessler JH, Doege KJ, Duncan KG, Fessler LI. Biosynthesis of collagen. J Cell Biochem 1985;28(1):31–37. DOI: 10.1002/jcb.240280106.
  19. Schofield JD, Prockop DJ. Procollagen-a precursor form of collagen. Clin Orthop Relat Res 1973(97):175–195. DOI: 10.1097/00003086- 197311000-00026.
  20. Ahuja T, Dhakray V, Mittal M, Khanna P, Yadav B, Jain M. Role of collagen in the periodontal ligament – a review. Int J Microbiol 2012;10(1).
  21. Kivirikko KI, Myllylä R. Post-translational processing of procollagens. Ann N Y Acad Sci 1985;460(1):187–201. DOI: 10.1111/j.1749-6632.1985.tb51167.x.
  22. Peltonen L, Halila R, Ryhänen L. Enzymes converting procollagens to collagens. J Cell Biochem 1985;28(1):15–21. DOI: 10.1002/jcb.240280104.
  23. Knott L, Bailey AJ. Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. Bone 1998;22(3):181–187. DOI: 10.1016/s8756-3282(97)00279-2.
  24. Hudson DM, Garibov M, Dixon DR, Popowics T, Eyre DR. Distinct post-translational features of type I collagen are conserved in mouse and human periodontal ligament. J Periodontal Res 2017;52(6):1042–1049. DOI: 10.1111/jre.12475.
  25. Yamauchi M, Sricholpech M. Lysine post-translational modifications of collagen. Essays Biochem 2012;52:113–133. DOI: 10.1042/bse0520113.
  26. Freedman RB, Hirst TR, Tuite MF. Protein disulphide isomerase: Building bridges in protein folding. Trends Biochemistry Sci 1994;19:331–336.
  27. Creighton TE, Hilson DA, Freedman RB. Catalysis by protein-disulphide isomerase of the unfolding and refolding of proteins with disulphide bonds J Mol Biol 1980;142:43–62
  28. Kirk JM, Bateman ED, Haslam PL, Laurent GJ, Turner-Warwick M. Serum type III procollagen peptide concentration in cryptogenic fibrosing alveolitis and its clinical relevance. Thorax 1984;39(10):726–732. DOI: 10.1136/thx.39.10.726.
  29. Viidik A. Interdependence between structure and function in collagenous tissues. In: Viidik A, Vuust J, ed. Biology of collagen. London: Academic Press; 1980. pp. 257–280.
  30. Diamant J, Andrew K, Baer E, Litt M, Arridge RGC. Collagen; ultrastructure and its relation to mechanical properties as a function of ageing. Proc R Soc Lond B Biol Sci 1972;180(1060):293–315. DOI: 10.1098/rspb.1972.0019.
  31. Gathercole LJ, Keller A. Crimp morphology in the fibre-forming collagens. Matrix 1991;11(3):214–234. DOI: 10.1016/s0934-8832(11)80161-7.
  32. Parry DA. The molecular and fibrillar structure of collagen and its relationship to the mechanical properties of connective tissue. Biophys Chem 1988;29(1–2):195–209. DOI: 10.1016/0301-4622(88)87039.
  33. Franchi M, Quaranta M, Macciocca M, Leonardi L, Ottani V, Bianchini P, et al. Collagen fibre arrangement and functional crimping pattern of the medial collateral ligament in the rat knee. Knee Surg Sports Traumatol Arthrosc 2010;18(12):1671–1678. DOI: 10.1007/s00167-010- 1084-6.
  34. Kolenda K, Najbar A, Rozenblut-Kościsty B, Serwa E, Skawiński T. Common occurrence of Sharpey's fibres in amphibian phalanges. Zoomorphology. 2018;137(2):329–336. DOI: 10.1007/s00435-018-0400-4
  35. Spiesz EM, Thorpe CT, Thurner PJ, Screen HRC. Structure and collagen crimp patterns of functionally distinct equine tendons, revealed by quantitative polarised light microscopy (qPLM). Acta Biomater 2018;70:281–292. ISSN 1742-7061. DOI: 10.1016/j.actbio.2018. 01.034.
  36. Francillon-Vieillot H, de Buffrénil V, Castanet J, Géraudie J, Meunier F, Sire JY, et al. Microstructure and mineralization of vertebrate skeletal tissues. Skeletal Biomineralizat: Patterns, Processes Evolution Trends 1989. pp. 175–234.
  37. Aaron J. Periosteal Sharpey's fibers: a novel bone matrix regulatory system? Front Endocrinol (Lausanne) 2012;3:98. DOI: 10.3389/fendo.2012.00098.
  38. Melcher AH, Eastoe JE. The connective tissues of the periodontium. In: Melcher AH, Bowen WH ed. Biology of the periodontium, London: Academic Press; 1969. pp. 167–343.
  39. Ho SP, Marshall SJ, Ryder MI, Marshall GW. The tooth attachment mechanism defined by structure, chemical composition and mechanical properties of collagen fibers in the periodontium. Biomaterials 2007;28(35):5238–5245. DOI: 10.1016/j.biomaterials.2007.08.031.
  40. Selvig KA. The fine structure of human cementum. Acta Odontol Scand 1965;23(4):423–441. DOI: 10.3109/00016356509007523.
  41. Wang HM, Nanda V, Rao LG, Melcher AH, Heersche JN, Sodek J. Specific immunohistochemical localization of type III collagen inporcine periodontal tissues using the peroxidase-antiperoxidasemethod. J Histochem Cytochem 1980;28(11):1215–1223. DOI: 10.1177/28.11.7000890.
  42. Jones SJ, Boyde A. The organization and gross mineralization patterns of the collagen fibres in sharpey fibre bone. Cell Tissue Res 1974;148(1):83–96. DOI: 10.1007/BF00224320.
  43. Yamamoto T, Wakita M. Initial attachment of principal fibers to the root dentine surface in rat molars. J Periodontal Res 1990;25(2): 113–119. DOI: 10.1111/j.1600-0765.1990.tb00901.x.
  44. Johnson RB. Synthesis of alveolar bone Sharpey's fibers during experimental tooth movement in the rat. Anat Rec A Discov Mol Cell Evol Biol 2005;284(1):485–490. DOI: 10.1002/ar.a.20179.
  45. Glimcher MJ. Mechanism of calcification: role of collagen fibrils and collagen-phosphoprotein complexes in vitro and in vivo. Anat Rec 1989;224(2):139–153. DOI: 10.1002/ar.1092240205.
  46. Glimcher MJ. Bone: nature of the calcium phosphate crystals and cellular, structural, and physical chemical mechanisms in their formation. In: Sahai N, Schoonen MAA, ed. Medical mineralogy and geochemistry, vol. 64, Chantilly, Virginia: The Mineralogical Society of America; 2006. pp. 223–282.
  47. Freeman E, Ten Cate AR. Development of the periodontium: an electron microscopic study. J Periodontol 1971;42(7):387–395. DOI: 10.1902/jop.1971.42.7.387.
  48. van Marion MM, Baaijens FP, Mol A, Merkx M, Rubbens MP. Matrix metalloproteinases and collagen remodeling a literature review. Division soft tissue biomechanics and engineering. Eindhoven Univer Technol 2006.
  49. Gowen M, Wood D, Ihrie E, Meats JE, Russell RG. Stimulation by human interleukin 1 of cartilage breakdown and production of collagenase and proteoglycanase by human chondrocytes but not by human osteoblasts in vitro. Biochim Biophys Acta 1984;797(2):186–193. DOI: 10.1016/0304-4165(84)90121-1.
  50. Kuhn K. The collagen family-variations in the molecular and supermolecular structure. Rheumatology 1986;10:29–69.
  51. Welgus HG, Campbell EJ, Bar-Shavit Z, Senior RM, Teitelbaum SL. Human alveolar macrophages produce a fibroblast-like collagenase and collagenase inhibitor. J Clin Invest 1985;76(1):219–224. DOI: 10.1172/JCI111949.
  52. Beertsen W, van den Bos T. Alkaline phosphatase induces the mineralization of sheets of collagen implanted subcutaneously in the rat. J Clin Invest 1992;89(6):1974–1980. DOI: 10.1172/JCI115805.
  53. Clark SD, Kobayashi DK, Welgus HG. Regulation of the expression of tissue inhibitor of metalloproteinases and collagenase by retinoids and glucocorticoids in human fibroblasts. J Clin Invest 1987;80(5):1280–1288. DOI: 10.1172/JCI113203.
  54. Amenta PS, Gay S, Vaheri A, Martinez-Hernandez A. The extracellular matrix is an integrated unit: ultrastructural localization of collagen types I, III, IV, V, VI, fibronectin, and laminin in human term placenta. Coll Relat Res 1986;6(2):125–152. DOI: 10.1016/s0174-173x(86) 80021-8.
  55. Kumada Y, Zhang S. Significant type I and type III collagen production from human periodontal ligament fibroblasts in 3D peptide scaffolds without extra growth factors. PLoS One 2010;5(4):e10305. DOI: 10.1371/journal.pone.0010305.
  56. Huang YH, Ohsaki Y, Kurisu K. Distribution of type I and type III collagen in the developing periodontal ligament of mice. Matrix 1991;11(1):25–35. DOI: 10.1016/S0934-8832(11)80224-6.
  57. Atkinson JC, Ruhl M, Becker J, Ackermann R, Schuppan D. Collagen VI regulates normal and transformed mesenchymal cell proliferation in vitro. Exp Cell Res 1996;228(2):283–291. DOI: 10.1006/excr.1996. 0328.
  58. Sodek J, Limeback HF. Comparison of the rates of synthesis, conversion, and maturation of type I and type III collagens in rat periodontal tissues. J Biol Chem 1979;254(20):10496–10502. DOI: 10.1016/S0021-9258(19)86736-4.
  59. Redlich M, Peleg I, Cooperman H, Shoshan S. Topological differences in the expression of collagen type I and collagen type III mRNAs in the rat gingiva. J Periodontol 1994;65(8):776–780. DOI: 10.1902/jop.1994.65.8.776.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.