Journal of Scientific Dentistry

Register      Login

VOLUME 3 , ISSUE 1 ( January-December, 2013 ) > List of Articles

Review

Nanotherapeutics in Oncology: Dendrimers the Nano Wonder

Jeelani S, John Baliah

Keywords : dendrimers, oncology,nanotherapeutics

Citation Information : S J, Baliah J. Nanotherapeutics in Oncology: Dendrimers the Nano Wonder. 2013; 3 (1):45-53.

DOI: 10.5005/jsd-3-1-45

License: CC BY-NC 4.0

Published Online: 00-06-2013

Copyright Statement:  Copyright © 2013; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

Cancer is one of the leading causes of death in the world. The research in the field of Oncology is a never ending journey. Emerging among the existing management modalities in Oncology is an enticing advance – Dendrimers as part of Nanotechnology. Simulating the concept of Trojan horse strategy are the nano molecules, Den-drimers which possess a design that provide a tailored sanctuary containing voids that provide a refuge from the out-side environment wherein the anti cancer drug molecules can be physically trapped and target the cancerous cells spe-cifically sparing the adjacent normal cells thus serving as an ideal technology in defending the disaster cancer.


PDF Share
  1. Buhleier E, Wehner W, Vögtle F. “Cascade” -and “nonskid-chain-like” synthesis of molecular cavity topologies. Synthesis. 1978;155–158.
  2. Newkome G.R, Z. Yao, Baker G.R, Gupta V. K, Micelles. Part1. Cascade molecules: A new ap-proach to micelles. A[27]-arborol. J. Org. Chem. 1985;50:2003–2004.
  3. Tomalia D. A, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P, Dendritic mac-romolecules: Synthesis of starburst dendrimers. Mac-romolecules. 1986;19: 2466–2468.
  4. Tomalia D. A, Durst H. D. Genealogically directed synthesis – Starburst cascade dendrimers and hyper-branched structures. Top. Curr. Chem. 1993;165:193–313.
  5. Miller T. M, Neenan T. X. Convergent synthesis of monodispersedendrimers based upon 1,3,5- trisubsti-tuted benzenes. Chem. Mater. 1990;2:346–349.
  6. Haag R, Stumbe J.F, Sunder A, Frey H, Hebel A. An approach to core-shell-type architectures in hyper-branchedpolyglycerols by selective chemical differentiation. Macromolecules 2000;33:8158–8166.
  7. Hawker C. J, J. M. J. Fréchet, Preparation of poly-mers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc. 1990;112:7638–7647.
  8. Morgan J. R, Cloninger M. J. Heterogeneously functionalized dendrimers. Curr. Opin. Drug Dis-cov. Devel. 2002;5:966–973.
  9. Gonzales N. R, De Pascalis R, Schlom J, Kashmiri S. V. S. Minimizing the immunogenicity of antibodies for clinical application. Tumour Biol. 2005;26:31.43.
  10. Matthey B, Engert A, Barth S. Recombinant immu-notoxins for the treatment of Hodgkin.s disease (Review). Int. J. Mol. Med. 2000; 6:509.514.
  11. Kong G, Braun RD, Dewhirst MW. Characterization of the effect of hyperthermia on nanoparticle ex-travasation from tumorvasculature. Cancer Res. 2001;61:3027.3032.
  12. Kong G, Braun RD, Dewhirst MW. Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res. 2000;60:4440.4445.
  13. Bilbao R, Bustos M, Alzuguren P, et al. A blood-tumor barrier limits gene transfer to experimental liver cancer: the effect of vasoactive com-pounds. Gene Therapy. 2000;7:1824
  14. Yarema K. J, Bertozzi C. R. Chemical approaches to glycobiology and emerging carbohydrate-based therapeutic agents. Curr. Opin. Chem. Biol. 1998;2:49.61.
  15. Lundquist J. J, Toone E. J. The cluster glycoside effect. Chem. Rev. 2002;102:555.578.
  16. Kiessling L. L, Pohl S. Strength in numbers: Non-natural polyvalent carbohydrate derivatives. Chem. Biol. 1996;3:71.77.
  17. Dennis J. W, Laferte S, Waghorne C, Breitman M. L, Kerbel R. S. ß1-6 branching of Asn-linked oligosac-charides is directly associated with metastasis. Science 1987;236–239.
  18. Sell S. Cancer-associated carbohydrates identified by monoclonal antibodies. Hum. Pathol. 1990;21:1003–1019.
  19. Kobata A, Amano J. Altered glycosylation of pro-teins produced by malignant cells, and application for the diagnosis and immunotherapy of tumours. Immunol. Cell Biol. 2005;83: 429–439.
  20. Dennis J. W, Granovsky M, Warren C. E. Protein glycosylation in development and disease. Bioes-says 1999;21:412–421.
  21. Tong L, Baskaran G, Jones M. B, Rhee J. K, Yarema K. J. Glycosylation changes as markers for the diag-nosis and treatment of human disease, in Biochemical and Genetic Engineering Reviews, S. Harding (Ed.). Intercept Limited, Andover, Hampshire, UK 2003; pp. 199–244.
  22. Chen B, Piletsky S, Turner A. P. High molecular recognition: Design of Keys. Comb. Chem. High Throughput Screen. 2002;5:409–427.
  23. Mecke A, Lee I, Baker Jr J. R, Holl M. M. Deform-ability of poly(amidoamine) dendrimers. Eur. Phy. J. E Soft Matter 2004;14:7–16.
  24. Farin D, Avnir D. Surface fractality of dendrimers. Angew. Chem. Int. Ed. Engl. 1991;30:1377–1379
  25. Culver KW. Clinical applications of gene therapy for cancer. Clin Chem. 1994;40:510.
  26. Rosenberg SA. The immunotherapy and gene ther-apy of cancer. J Clin Oncol. 1992;10:180.
  27. Kukowska-Latallo J, Candido K, Cao ZY, et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res. 2005;65:5317.
  28. Palcic M. M, Li H, Zanini D, Bhella R. S, Roy R. Chemoenzymatic synthesis of dendritic sialyl Lewis(x). Carbohydr. Res. 1997;305:433–442.
  29. Roberts J. C, Bhalgat M. K, Zera R. T. Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst TM dendrimers. J. Biomed. Mater. Res. 1996;30:53–65
  30. Rockendorf N, Lindhorst T. K. Glycodendrimers. Top. Curr. Chem. 2001;217:201–238.
  31. Crespo L, Sanclimens G, Pons M, Giralt E, Roho M, Albericio F. Peptide and amide bond-containing den-drimers. Chem. Rev. 2005;105:1663–1681.
  32. Shchepinov M. S, Udalova I. A, Brigman A. J, South-ern E. M. Oligonucleotide dendrimers: Synthesis and use as polylabelled DNA probes. Nucleic Acids Res. 1997;25: 4447–4454.
  33. Nilsen T. W, Grayzel J, Prensky W. Dendritic nucleic acid structures. J. Theoret. Biol. 1997;187:273–284.
  34. Hudson R. H. E, Damha M. J. Nucleic acid den-drimers: Novel biopolymer structures. J. Am. Chem. Soc. 1998;115:2119–2124.
  35. Suzuki Y, Otomo T, Okazi H, Sawai H. Synthesis and properties of a new type DNA dendrimer. Nucleic Acids Symp. Ser. 2000;44:125–126.
  36. Li Y, Tseng Y. D, Kwon S. Y, Espaux L. D, Bunch J. S, McEuen P. L, Luo D. Controlled assembly of den-drimer-like DNA. Nat. Mater. 2004;3:38–42.
  37. Al-Jamal K. T, Sakthivel T, Florence A. T. Dendrisomes: Vesicular structures derived from a cationic lipidicdendron. J. Pharm. Sci. 2005;94:102–113.
  38. Takeoka S, Mori K, Ohkawa H, Sou K, Tsuchida E. Synthesis and assembly of poly(ethylene glycol)- lipids with mono-, di-, and tetraacyl chains and a poly(ethylene glycol)chain of various molecular weights. J. Am. Chem. Soc. 2000;122:7927–7935.
  39. Pushkar S, Philip A, Pathak K and Pathak D. “ DEn-drimers: Nanotechnology Derived Novel Polymers in Drug Delivery”. Indian J. Pharm. Educ. Res. 2006;40(3):153-158.
  40. Sakthivel T and Florence A.T. “ Adsorption of am-phipathic dendrond on polystyrene nanoparticles”. Indian J. Pharm. 2003;254:23-26.
  41. Yiyun C, Zhenhua X, Minglu M and Tonguen X. “Dendrimers as Drug Carriers: applications in differ-ent routes of drug”. J. Pharma. Sci. 2008;97(1):123-143,
  42. Namazi H, Adeli M. Dendrimers of citric acid and poly (ethylene glycol) as the new drug-delivery agents. Biomaterials. 2005;26:1175–1183
  43. Tripathi P. K, Khopade A. J, Nagaich S, Shrivastava S, Jain S, Jain N. K. Dendrimer grafts for delivery of 5-fluorouracil. Pharmazie. 2002;57:261–264.
  44. Ooya T, Lee J, Park K. Effects of ethylene glycol-based graft, starshaped, and dendritic polymers on solubilization and controlled release of paclitaxel. J. Controlled Release. 2003;
  45. Ooya T, Lee J, Park K. Hydrotropic dendrimers of generations 4 and 5: Synthesis, characterization, and hydrotropic solubilization of paclitaxel. Bioconjugate Chem. 2004;15: 1221–1229.
  46. Benito J. M, Gomez-Garcia Ortiz Mellet M, C, Baus-sanne I, Defaye J, Garcia Fernandez J. M. Optimiz-ing saccharide-directed molecular delivery to bio-logical receptors: Design, synthesis, and biological evaluationof glycodendrimer-cyclodextrin. J Am Chem Soc. 2004;126(33):10355-63.
  47. Jansen J. F. G. A, Meijer E. W, de Brabander-van den Berg E. M. M. The dendritic box: Shapeselective liberation of encapsulated guests. J. Am. Chem. Soc. 1995;117:4417–4418.
  48. Zalipsky S, Mullah N, Harding J. A, Gittelman J, Guo L, De Frees S. A. Poly(ethylene glycol)-grafted lipo-somes with oligopeptide or oligosaccharide ligands appended to the termini of the polymer chains. Bio-conjugate Chem. 1997;8:111–118.
  49. Reddy J. A, Allagadda V. M, Leamon C. P. Targeting therapeutic and imaging agents to folate receptor positive tumors. Curr. Pharm. Biotechnol. 2005;6:131–150.
  50. Leamon C. P, Reddy J. A. Folatetargeted chemother-apy. Adv. Drug Delivery Rev. 2004;56:1127–1141.
  51. Roy E. J, Gawlick U, Orr B. A, Kranz D. M. Folate-mediated targeting of T cells to tumors. Adv. Drug Delivery Rev. 2004;56:1219–1231.
  52. Choi Y, Thomas T, Kotlyar A, Islam M. T, Baker J. R. Synthesis and functional evaluation of DNAas-sembledpolyamidoamine (PAMAM) dendrimer clus-ters with cancer cellspecific targeting. Chem. Biol. 2005; 2:35–43.
  53. Heuser L. S, Miller F. N. Differential macromolecu-lar leakage from the vasculature of tumors. Can-cer. 1986;57:461–464.
  54. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in References 39 macromolecular therapeutics: A review. J. Controlled Release. 2000;65:271–284
  55. Nagayasu A, Shimooka T, Kinouchi Y, Uchiyama K, Takeichi Y, Kiwada H. Effects of fluidity and vesicle size on antitumor activity and myelosuppressive ac-tivity of liposomes loaded with daunorubicin. Biol. Pharm. Bull. 1994;17:935–939.
  56. Tabata Y, Murakami Y, Ikada Y. Tumor accumula-tion of poly(vinyl alcohol) of different sizes after intravenous injection. J. Controlled Re-lease. 1998;50:123–133
  57. Barth R. F, Adams D. M, Soloway A. H, Alam F, Darby M. V. Boronated starburst dendrimermono-clonal antibody immunoconjugates: Evaluation as a potential delivery system for neutron capture ther-apy. Bioconjugate Chem. 1994;5:58–66
  58. Barth R. F, Soloway A. H. Boron neutron capture therapy of primary and metastatic brain tumors. Mol. Chem. Neuropathol. 1994;21:139–154.
  59. Liu L, Barth R. F, Adams D. M, Soloway A. H, Reis-feld R. A. Bispecific antibodies as targeting agents for boron neutron capture therapy of brain tumors. J. Hematother. 1995;4: 477–483.
  60. Alam F, Soloway A. H, Barth R. F, Mafune N, Ad-ams D. M, Knoth W. H. Boron neutron capture ther-apy: Linkage of a boronated macromolecule to monoclonal antibodies directed against tumorassociated antigens. J. Med. Chem. 1989;32:2326–2330.
  61. Hudde T, Rayner S. A, Comer R. M, Weber M, Isaacs J. D, Waldmann H, Larkin D. F, George A. J. Acti-vated polyamidoaminedendrimers, a non-viral vector for gene transfer to the corneal endothelium. Gene Ther. 1999;6:939–943.
  62. Haensler J, Szoka Jr F. C. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjugate Chem. 1993;4:372–379.
  63. Kim T, Seo H. J, Choi J. S, Jang H.S, Baek J.U, Kim K, Park J.S. PAMAM-PEG-PAMAM: Novel triblock copolymer as a biocompatible and efficient gene de-livery carrier. Biomacromolecules. 2004;5:2487–249
  64. Donato Spedalierem, Sarah S. In Troy C. 1700-1250 BC, Nic Fields. Spedalier, Osprey Publishing. 2004;51-52
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.